If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2+80x+30=0
a = 30; b = 80; c = +30;
Δ = b2-4ac
Δ = 802-4·30·30
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-20\sqrt{7}}{2*30}=\frac{-80-20\sqrt{7}}{60} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+20\sqrt{7}}{2*30}=\frac{-80+20\sqrt{7}}{60} $
| 5(x+1)-x=-2(x+2) | | -11-14k=9-11k+4 | | 2x+12-8x=6x-6+4 | | j=72/5 | | 12+16y=36 | | X+18+2x^2=-5x+3 | | b/4-8=-48 | | b−47=−32 | | w+7=6+20w-19w | | 30x^2+80x-30=0 | | -7D=10-5d | | -25-a=-15 | | -17k-6=-6-8k-9k | | 4a-22=-10 | | 47+x=151 | | 2v-7=15 | | p-(-63)=50 | | x-100=60 | | 41x+(-5)x-32x=48 | | -2x+3(4x-8)=4x-6 | | =(3n+6)⋅3+(2n+2)⋅4 | | 6c+3=-63 | | 80+x=19 | | 3x+9x-14x+29x+12x+(-5)=-44 | | x-35=19 | | 12x+16=36 | | 4(x-4)=2x-34 | | ⅔g=6 | | 4x-20=1.5 | | 4(b+7)=8b+4 | | 2/3a+8/9=4 | | 4x-2(x-3)=-4=5x-5 |